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Evolutionary Computation and Postwildfire Land-cover Mapping 
%with Multispectral Imagery 

Steven P. 13mby*, Steven W. Koch, and Leslie A. Hansen 

Los Alarnos National Laboratory, Mail Stop D436, 
Los Almos, New Mexico 87545, U.S.A. 

ABSTRACT 

The Cerro Grsurde:/I,os Alamos wildfire devastated approximately 43,000 acres (17,500 ha) of forested land, and destroyed 
over 200 structures in the town of Los Alamos. The need to monitor the continuing impact of the fire on the local 
environment has led to the application of a number of advanced remote sensing technologies. During and after the fire, 
remote-sensing data was acquired fiorn a variety of aircraft- and satellite-based sensors, including Landsat 7 Enhanced 
Thematic Mapper (ETM+). We now report on the application of a machine learning technique io the automated classification 
of land cover using multispectral imagery. We apply a hybrid gertelic programminghupervised classification technique to 
evolve automatic feature extraction algorithms. We use a software package we have developed at Los Alamos National 
Laboratory, called GENIE, to carry out this evolution. We use multispectral imagery fiom the Landsat 7 ETM+ instrument 
fiom before and after the wildfire. Using an existing land cover classification based on a Landsat 5 TM scene for our training 
data, we evolve algorithms that distinguish a range of land cover categories, along with clouds and cloud shadows. The 
details of our evolved classification are compared to the manually produced land-cover classification. 

Keywords: Feature Extraction, Genetic programming, Supervised classification, Multi-spectral imagery, Land cover, 
Wildfire. 

1. INTRODUCTWON: IZEMCITE SENSING OF FOREST FIRES AND LAND COVER 

Between May 6 and May 18,2000, the Cerro Grande/Los Alamos wildfire burned approximately 43,000 acres (17,500 ha) of 
forest and 235 residences in the town of Los Alamos, New Mexico OJSA). Restoration efforts following the fire were 
complicated by the large scale of the fire, and by the presence of extensive natural and man-made hazards. These conditions 
forced a reliance on remote sensing techniques for rnapping and classifjring the burn region and surrounding vegetation. 
During and after the fire, remote-sensing data was acquired fiom a variety of aircraft- and satellite-based sensors, including 
Landsat 7, to evaluate ihe impact ofthe fire and begin to monitor the rehabilitation of the ecosystem. 

Remote sensing of forest fires has traditionally involved human interpretation of visible wavelength andor infrared 
photography, Since the introduction of aircraft and satellite mounted multi-spectral imaging instruments, e.g., the Advanced 
Very High Resolution Radiometer’ (AVHRR.) on the NOAA Polar<.orbiting Operational Environmental Satellite (POES) 
series, and the Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM+) instruments on the Landsat’ series of Earth 
observation satellites, several physics-based and empirical algorithms ,for detecting forest fires have appeared in the literature. 
Two general approache!$ exist: detection of “hot-spots” and fire fronts, e.g., using thresholds on brightness t e m p e r a t ~ r e ~ ~ ~ ~ ” ~ ~ ’  
in AVHRR band 3 (3.‘7pm), and mapping of post-fire burn scars. A number of researchers have investigated the use of 
Landsat TM imagery for measuring wildfire impacl, by mapping of the burn scar. For example, Lobo et als apply a 
combination of spectral image segmentiition atid hierarchical clustering to the mapping and analysis of fires in Mediterranean 
forests. Kushla and Ripple’ use Landsiit imagery to wdp forest survival following a wildfire in western Oregon (USA), and 
investigate linear combinations of post-fire and multi-temporal TM band ratios and differences. 

* Further author information: (Send coiiespondence to S.P.B.) Email: brumby@lanl.gov 



Figure 1. Post-fire, July 19, 2000: Bright region in 
center of image is the burn scar. Los Alamos town 
lies against the underside of the burn scar. Topography 

Figure 2. BAER Team burn-severity map over 
topographic map: Medium gray region marks 
high severity burn, pale gray region marks low 
severityh-burned region. This image taken 
from the offic'ial BAER team web site: 

changes from forested mountains (left) to bare mesas. http://www. baerteam.orgfcerrogrande 

Beyond classification and mapping of the wildfire burn scars, rehabilitation efforts require up-to-date forest inventories and 
land-cover maps. These can be used to plan rehabilitation efforts, and to estimate remaining forest fbels and hence the risk of 
further significant wildfires. These mapping products need to be revised on a time scale of years, as destroyed forest gives 
way to new plantings or as erosion sets in. Land-cover map makers have used Landsat TM and ETM+ data for man years, 
and more or less automated algorithms for land cover feature extraction are the subject of an extensive 1iterature1'"li1! Such 
techniques generally require some parameter setting for any given scene, and we are interested in exploring how a machine 
may learn to set these parameters or find new algorithms. 

We have reported previously on the application of a machine learning technique to the classification of forest fire burn 
severity using Landsat 7 ETM+ multispectral imageryL3. For the present work, we are interested in classifying and mapping 
the post-fire burn scar and the background land-cover classes that form its context. We report results of combining individual 
feature classification results using a K-means clustering approach (e.g., Ref. 11). We describe the behavior of our evolved 
classifiers for burn scar and for one particular land-cover case, a generic forest finder. Our multi-feature land-cover map is 
compared to a manually produced land-cover map based on field data collected before the wildfire. 

2. MACHINE LEARNING: GENIE 

 GENIE'^^'^^'^ is an evolutionary computation (EC) software system which uses a genetic alg~rithm'~*'~*'~ (GA) to assemble 
image-processing algorithms from a collection of low-level ("primitive") image processing operators (e.g., edge detectors, 
texture measures, spectral operations, and various morphological filters). This system has been shown to be effective in 
looking for complex terrain features, e.g., golf courseszo. GENIE can sequentially extract multiple features for the same scene 
to produce terrain classifications", which we will describe in greater detail, below. The implementation details of the GENIE 
soha re  have been described at length el~ewhere'~*'~, so we will only present a brief description of the system here. 

GENIE follows the classic evolutionary paradigm: a population of candidate image-processing algorithms is randomly 
generated, and the fitness of each individual assessed from its performance in its environment, which for our case is a user- 
provided training scene. After fitness has been assigned, reproduction with modification of the most fit members of the 
population follows via the evolutionary operators of selection, crossover, and mutation. The process of fitness evaluation and 
reproduction with modification is iterated until some stopping condition is satisfied (e.g., a candidate solution with 
sufficiently high score is found). 



The algorithms assembled by GENIE will generally combine spatial and spectral processing, and the system was in fact 
designed to enable experimentation with spatio-spectral image procwiing of multi-spectral and hyper-spectral imagery. Each 
candidate algorithm in the population consists of a fixed-length string of primitive image processing operations. We now 
briefly describe ow method of providing training data, our encoding of image-processing algorithms as “chromosomes” for 
manipulation by the GA, and ow method for evaluating the fitness of individuals in the population. 

2.1. Training Data 
The environment for the population consists of one or a number of training scenes. Each training scene contains a raw multi- 
spectral image data cube, together with a weight plane ancl a truth plane. The weight plane identifies the pixels to be used in 
training, and the truth plane locates the features of interest. in the training data. Providing sufficient quantities of good training 
data is a crucial to the success of any machine learning technique. In principle, the weight and truth planes may be derived 
from an actual ground campaign (i.e., collected on the ground at the time the image was taken), may be the result of applying 
some existing algorithm, and/or may be: tnarked-up kiy hand using the best judgement of an analyst looking at the data. We 
have developed a graphical user interface (GUI), called ALADI)M, for the manual mark-up of raw imagery. Using ALADDM, 
the analyst can view a multi-spectral image in a variety of ways, and can mark up training data by painting directly on the 
image using the mouse. Training data is ternary-valued, with the possible values being “true”, “false”, and “unknown”. True 
defines areas where the analyst is confident that the feature of interest does exist. False defines areas where the analyst is 
confident that the feature of interest does not exist. Unknown pixels do not influence the fitness of a candidate algorithm. 

2.2. Representation of Image-l’rocesshg Algorithms 
Traditional genetic (GP) usos a variable sized tree representation for algorithms. Our representation differs in 
that the total nunher of image-processing operator nodes is fixed (although not all of these need be used in the final graph), 
crossover is carried out directly on the linear representation, and we allow reuse of values computed by sub-trees through a 
set of temporary memory “scratch planes”. 

We have restricted ow “gene pool” to a set of usefil primitive image processing operators (“genes”). These include spectral, 
spatial, logical and tlresholding operators. ‘The set of morphological operators is restricted to function-set processing 
morphological operators, Le., gray-scale morphological operators with a flat structuring element. The sizes and shapes of the 
structuring elements used by these operators tire also restricted to ;a pre-defined set of primitive shapes, which includes the 
square, circle, diamond, horizontal cross and diagonal cross, and horizontal, diagonal, and vertical lines. The shape and size 
of the structuring element are defined by operator parameters. Other local neighborhoodwindowing operators such as mean, 
median, etc., syecifj their kernels/window:; in a similar way. The spectral operators have bcen chosen to permit weighted 
sums, differences and ratios of’ data and/or “scratch” planes, where a scratch plane is a block of memory for storing 
intermediate calculations within a candidate image-processing algorithm. 

A single gene consists of an operator, plus a variable number of input arguments specifying from where input is read, output 
arguments specifyirrg where output is to be written, turd any additional parameters that might be required to specify how the 
specific operator works (e.ge9 the diameter ancl shape: of a structuring element used in a morphological filter). The operators 
used in GENIE take one or more distinct image planes as input, and generally produce a single image plane as output. Input 
can be taken from any data plane in the training data image cube. Output is written to one of a number of scratch planes, 
temporary workspaces where an image plane can be stored. Genes can also take input from scratch planes, but only if that 
scratch plane has been written to by another gene positioned earlier in the chromosome sequence. We use a notation for 
genes13 that is most easily illustrated by an example: the gene [ADDP rD0 rS1 wS2] applies pixel-by-pixel addition to two 
input phnes, read from data plane 0 and from scratch plane 1, and writes its output to scratch plane 2. Any additional 
required operator parameters are listed after the output arguments. 

Note that although all chromosomes have the same fixed number of genes, the effective length of the resulting algorithm may 
be smaller than this. For instance, an operator may write to a scratch plane that is then overwritten by another gene before 
anything read:; fiom it. GENE performs an analysis of chromosome graphs when they are created and only carries out those 
processing steps that actually affect the final result. Therefore, txle fixed length of the chromosome acts as a maximum 
effective length. 



2.3. Supervised Classification and Fitness Evaluation 
Each candidate image-processing algorithm generates a number of intermediate feature planes (or “signature” planes), which 
are then combined to generate a Boolean-valued mask for the feature of interest. This combination is achieved using a 
standard supervised classifier (we use the Fisher linear di~criminant~~), and an optimal threshold function. 

Complete (or “hard”) classification requires that the image-processing algorithm produce a binary-valued output plane for 
any given scene. It is possible to treat, e.g., the contents of the first scratch plane as the final output for that candidate image- 
processing algorithm (thresholding would generally be required to obtain a binary result, though GENIE can choose to apply 
its own Boolean thresholding functions). However, we have found it useful to perform the combination of the data and 
scratch planes using a non-evolutionary method, and have implemented a supervised classifier backend. To do this, we first 
select a subset of the scratch planes and data planes to be “signature” planes. For the present experiments, this subset consists 
of just the scratch planes. We then use the provided training data and the contents of the signature planes to derive the Fisher 
Discriminant, which is the linear combination of the signature planes that maximizes the mean separation in spectral terms 
between those pixels marked up as “true ”and those pixels marked up as “false”, normalized by the total variance in the 
projection defined by the linear combination. The output of the discriminant-finding phase is a real-valued single-plane 
“answer” image. This is reduced to a binary image by exhaustive search over all the training pixels to find the threshold 
value that minimizes the total number of misclassifications (false positives plus false negatives) on the training data. 

The fitness of a candidate solution is given by the degree of agreement between the final binary output plane and the training 
data. This degree of agreement is determined by the Hamming distance between the final binary output of the algorithm and 
the training data, with only pixels marked as true or false (as recorded in the weight plane) contributing towards the metric, 
The Hamming distance is then normalized so that a perfect score is 1000. 

3. RESULTS 

3.1. Training Data 
The remotely-sensed images used in this paper are Landsat 7 ETM+ 30 meter multi-spectral data (ETM+ bands 1-5 and 7). 
These scenes are Level 1G radiance corrected and georeferenced standard data products obtained via the U.S. Geological 
Survey (USGS) EarthExplorer” web site. We used a post-fire Landsat scene from July 17,2000, Path 34 and Row 35 for our 
burn scar mapping, and a pre-fire Landsat scene fiom July 1, 1999, Path 34 and Row 35, for training our land-cover 
classifiers at approximately the same stage of senescence as the post-fire image. These multi-temporal images were 
registered to each other using the standard co-registration tools of RSl’s ENVIzs remote sensing software package. The 
image displayed in Fig. 1 is a false-color image, which has then been converted to gray-scale and has had its contrast 
enhanced for the printing process. As we are interested in mapping vegetation and burn scars, we generally view the data 
using a Visible/Infiared/Thermal pattern of a thermal IR band (ETM + band 7,2.2p)  for the red component, a near IR band 
for the green component (band 5, 1.65p),  and a visible red band for the blue component (band 3, 0.66pm). A Landsat 7 
Path/Row swath has an across-track field-of-view of approximately 185 km, with similar along-track length, resulting in a 
field-of-view of approximately 34,000 s q h ,  which is much larger than needed for this. Hence, we spatially crop the image 
to a 1000 x 1000 pixel region centered on the Los Alamos National Laboratory for training purposes, and test our algorithms 
by applying them to an 80km wide (East-West) by 60 km long (North-South) region that encompasses the area of interest 
(Jemez Mountains and Pajarito Plateau). We did not use the 60m thermal or 15m panchromatic data in this study. 

Atmospheric measurements were not available for the scene, so we did not attempt to carry out any corrections for haze or 
atmosphere. The topography of Los Alamos is complex, consisting of a dormant volcano (the Jemez Mountains) rising to 
approximately 10,000 feet (3.3km), surrounded by a radiating network of mesas at 7,000 - 8,000 feet (Pajarito Plateau), 
falling off to the Rio Grande river valley at approximately 6,500 feet elevation. Traditionally, illumination effects due to 
complex topography can be approximately “factored out” by using band ratios, or removed using principal components 
analysis (see, e.g., Ref, 10,ll). Here, we are interested in the GENIE software’s ability to derive results based on the raw 
imagery, and do not add any additional band ratio or band difference planes. 

Our training data was based on two existing map products. The burn scar training data was derived fiom the official Cerro 
Grande Burned-Area Emergency Rehabilitation (BAER) Team’s burn severity map, Fig. 2, which was produced by trained 
observers flying over the fire, and visual inspection of high-resolution (-1 meter) aerial color/in&ared photography collected 
during and immediately after the fire. Using this map as a guide, we marked up several regions of the Landsat image as 
“burn”, and several regions as “non-bum” (Fig. 3). The BAER Team assign “burn severity” on the basis of tree mortality - 
low burn severity corresponds to grass fire and low tree mortality, medium severity burn classification implies crown fire and 



Figure 3. Training Data over raw imagery: White 
patches mark “burn” regions. Gray patches mwk 
“non-bum” regions. Note: this image is presented at a 
larger spatial scale than Figure 2. 

Figure 4. Land cover map for Los Alamos region: based 
on unsupervised Isodata clustering of a cloud-free Landsat 5 
TM image, with clusters merged manually based on field 
data. (S,, W. Koch, private communication.) 

majority tree rnortality (more than half of the trees in the marked region are dead), and the high severity burn classification 
requires that 70 - 100% of the trees are dead. The Cerro Grande: wildfire tended to produce either high severity or low 
severity burn, with only a relatively small fraction of the burn classified as medium burn severity in the BAER Team maps. 
This was mostly due to the over-grown nature of the Ponderosa pinehixed conifer forest which suffered most of the damage, 

Vegetative land-cover in the Jemez Mountains ecosystem can be nsofully described by approximately a dozen land-cover 
categories. Forest in the region is a mixture of Ponderosa Pine, conifer trees (including Douglas fir and White fir), Aspen, and 
deciduous species including Gambel’s Oak. Open and shrubland categories include alpine meadows (including the grasslands 
of the Jemez caldera), Pifion-Juniper shrubland, sparsely vegetated mesa tops, and bare outcrops of volcanic tuff and basalt. 
A pre-fire land-cover map of the Los Mamas area (Fig, 4) used a seini-automated technique26 to produce a map with 12 land- 
cover classes. The Isodata algorithm (see, e.g., Ref. 11) was used to cluster a 30km x 30km subset of a Landsat 5 TM scene 
(30 meter resolution, 6 channel multi-spectral imagery, collected in the Fall of 1996). The complexity of the scene was 
reduced by cropping out the area immediately surroun$ng the town o f  Los Alamos and the Los Alamos National Laboratory 
using additional ground survey data. Fifty clusters were used for this unsupervised clustering, and the resulting clusters were 
reduced by hand to 12 final land-cover classes, using field data from approximately 60 ground points. We registered this map 
to our new Landsat 7 scenes and used individual classes (e.g., Ponderosa pine) and the union of sets of related classes (e.g., 
all the forest classes: Ponderosa pine, mixed conifer, and aspen) to provide training data for GENIE. In fact, we were unable 
to directly use the individual land-cover classes of this inap for the interesting reason that between the time of the Landsat 5 
data collection and the present, more than one forest fire had sigruficantly changed parts of the local environment in the 
region of interest (Dome wildfire of 1997). Instead, we used this existing land-cover map as a guide to the hand mark-up of 
training data. 

3.2. Example Evolved Image-Processing Algorithm: Burn Scar 
The system was run with a population OF 50 chromosomes, each havinB a fixed length of 20 genes, and 3 intermediate feature 
(“scratch”) planes. The GA was allowed to evolve for 30 generations, in this case, evaluating 1282 distinct candidate image 
processing algorithms, which is very small compared to the search space of possible algorithms given our representation, 
This required approximately 7 hours of wall-clock time running on a 5OOMHz L i n d n t e l  Pentium 2 workstation. 



Figure 5. Real-valued Answer Plane: We use a 
Fisher Discriminant to find the optimal linear 
combination of evolved “signature” planes into a real- 
valued answer plane. Regions which will tend to be 
classified as “burn” are bright. This image has been 
histogram-equalized to increase contrast. 

Figure 6. Burn mask Thresholding the answer plane 
produces this b u p  mask. There is substantial 
agreement with the details of the BAER map (Fig.2). 

The best evolved image-processing algorithm had the chromosome, 

[OPEN rD1 wS1 1 l][ADDS rD4 wS3 0.34][NEG rS1 wSl][MULTP rD4 rS3 wS2] 
[LINCOMB rS1 rD6 wS3 O.lI][ADDP rS1 rS3 wSl][SUBP rS1 rD5 wSl] 

In words, the image-processing algorithm works as follows. Note that GENIE converts the byte-valued raw data to real- 
valued data (64 bit doubles) and keeps that precision through all its calculations. 

1. Data plane D1 (ETM+ band 1, visible blue 0 . 4 8 ~ )  undergoes a grayscale morphological opening operation (node 1. 
OPEN) using a “circular” structuring element with diameter equal to 3 pixels (equivalent to a 3x3 square with comers 
removed) and the result is written to scratch plane S1, 

2. The negative of this plane is taken (node 3. NEG), i.e., S1 + - Sly  
3. The new S1 is linearly combined (node 5. LINCOMB) with data plane D6 (ETM+ band 7, medium wavelength infiared 

(MWIR) 2.22pm) with linear weights: 0.1 l*S1 + 0.89*D6 and the result written to scratch plane S3 (its final value), 
4. Scratch planes S1 and S3 are summed (node 6. ADDP), and the difference (node 7. SUBP) of this sum and data plane 

D5 (ETM+ band 5, MWIR 1 . 6 5 ~ ) ~  S1 + S3 - D5, is written to S1 (its final value), 
5. Data plane D4 (ETM+ band 4, near infrared 0 . 8 3 p )  has a constant, 0.34 times a DATASCALE variable equal to the 

range of the input raw data values, added to each pixel (node 2. ADDS) and is multiplied by D4 again to form the linear 
combination D4*D4 + (0.34*DATASCALE)*D4, which is written to scratch plane S2 (its final value). 

The final values of SI, S2, and S3 are then combined in the linear sum, where the coefficients and intercept have been chosen 
by the Fisher discriminant, as described in Section 2.3, above, to produce our real-valued answer plane A (Figure 5): 

A=0.0147*51- O.O142*S2 + O.O134*S3 + 1.554 

Converting A to a Boolean mask at a threshold value of 0.8933 produces Figure 6. In relation to the BAER map (Fig. 2), we 
see that the system has extracted the high severity burn region, and the spatial details of this classification correspond very 
closely to the high severity burn regions in the BAER map. To carry out a quantitative comparison, we converted the high- 
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Figure 7. Comparison of high-severity burn masks: There is obvious qualitative agreement between the 
manually constructed high-severity hum mask (lee) &and GENIE’S evolved burn mask (right). Quantitatively, the 
raster burn mask produccd by GENIE achieved a nominal detection rate of 74% with a nominal false alarm rate of 
1.3%. In fact, the false iilarin rate is better than this, as ongoing field work has verified the presence of the high- 
severity burn indicated in the lower right quarter ofthe right psnt:l. 

severity region of the manual classification map (Fig. 7, left panel) to a raster burn mask co-registered with the GENIE result 
(Fig. 7, right panel). We found that GENIE achieved a nominal detection rate of 74% with a nominal false alarm rate of 1.3%. 
In fact, the actual false alarm rate is better than this, as ongoing field work has verified the presence of the high-severity burn 
indicated in the lower right quarter of the right panel. Most of the false negative pixels occur on the edge of Los Alamos 
township, in a region where high-severity burn turns into medium severity burn in the manual classification. Given the 
quantized nature of the manual classification, we believe that this result is reasonable, and provides a useful conservative 
quantitative estimate of the high-severity burn area. 

To check the reasonableness of our algorithm’s performance outside ,the training zone, we ran the evolved image-processing 
algorithm over a larger fraction of the Landstt scene, encompassing the entire Jemez mountain range. This resulted in the 
detection of a severe burn site on the Western side o f  the Jemez mountains, which could not be explained by cloud shadows 
or data artifacts. On further investigation, this turned out to be a detection of a second wildfire scar produced by the Stable 
wildfire affecting Stable Stream and School House Mesa in the Jemez Mountains of northern New Mexico, which destroyed 
approximately 800 acres of forest in Septeniber/October of 1999. 

3.3 Land-cover mapping with GENIE 
To provide a context for GENIE’S detection of wildfire burn scar, we have used GENIE to carry out land-cover mapping of a 
pre-fire Landsat 7 scene. Using a procedure exactly analogous to that described above for extraction the burn scar, we used 
the pre-fire manual land-cover classification of Fig, 4 to provide a small amount of hand drawn training data for the 
following broad categories of land covw: forest, pifioii-juniper open land, and grasslands. The result for the forest feature is 
shown in Fig. 8., and we can compare this to the existing land-cover map’s combined classes of Ponderosa Pine, Mixed 
Conifer, and Aspen shown in Fig. 9. We see that the classifications show good qualitative agreement, except in the region of 
the burn scar left by the Dome wildfire of 1997. On further inspection, the grayscale answer plane produced by GENIE, Fig. 
10 (which is automatically thresholded by GENIE to produce Fig. SI, contains much structure, and suggests a possible “forest 
abundance” interpretation for the grayscale values. ‘The quantitative validity of this possible interpretation will be the study 
of future work. We stress that there is no reason to cxpect this behavior, as the only training data provided to GENIE was 
Boolean. 

In this way, we were able to use G ~ ~ I E  to rapidly evolve a set of vegetative and soil land-cover feature extraction algorithms 
for the pre-fire scene. Each classifier appeared to generalize well when presented with progressively larger regions of the 



Figure 8. Forest result: White regions are forest, dark 
regions are non-forest. The region within the gray 
rectangle reveals loss of forest due to the Dome 
wildfire (1997), a separate wildfire incident. 

Figure 9. Forest test data: Combined mixed conifer, 
ponderosa pine, and aspen classes from the Los 
Alamos land-covsr map (Fig. 4). White regions are 
forest, gray regions are non-forest, and black regions 
are unclassified. The black rectangle shows pre-Dome 
wildfire forest cover (compare to Fig. 8). 

Landsat 7 scene. Combination of these individual results allows construction of a traditional land-cover map. GENIE is 
designed to extract one feature at a time, and post-processing is required to combine multiple binary classifications for 
different features into a single map of terrain classification. On inspection, the set of feature classifiers overlap spatially (i-e., 
at least two classifiers disagreed) on approximately 20% of the pixels, so a scheme for resolving conflicts between classifiers 
is required. Previous work with GENIE using multiple features” considered a “three-color trick” for visualizing the GENIE 
results: three Boolean feature classifications can be combined by mapping the features to the RGB channels of a color 
display, which gives 3 pure and 5 mixed color classes. We used this approach to produce the multi-feature land-cover map 
shown in Fig .l 1. We see that the result is strongly qualitatively consistent with the existing land-cover map in the 
neighborhood of Los Alamos. Work is now underway to validate the GENIE map across the 80 km x 60km region of interest, 
and to extend this classification to provide finer class distinctions (e.g., types of forest). 

4. CONCLUSIONS 

We have investigated evolution of image-processing algorithms to extract wildfire burn scars and land-cover classes in 
Landsat 7 ETMt imagery fkom two time periods, pre- and post-fire, and have described the operation of some evolved 
algorithms in detail. The evolved algorithm shows a good qualitative fit to the published BAER Team burn-severity map of 
the May 2000 Cerro GrandeLos Alamos wildfire, specifically in comparison to their high-severity burn class (70-100% tree 
mortality regions), K-means clustering of GENIE feature planes shows promise for production of multi-feature land-cover 
maps. We find these results quite encouraging for the future application of this machine learning technique. 
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Figure ‘LO. Grsyscale Foresl Result: Regions are bright as some function 
of their “forest” content. This grayscale result is automatiqally thresholded 
by GENIE to produce the I3oolean classification shown in Fig. 8. A 
histogam equalization has been applied to an hance spatial details. 
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